首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   35篇
  国内免费   157篇
地球物理   16篇
地质学   453篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2024年   4篇
  2023年   8篇
  2022年   18篇
  2021年   13篇
  2020年   29篇
  2019年   32篇
  2018年   16篇
  2017年   37篇
  2016年   19篇
  2015年   12篇
  2014年   17篇
  2013年   85篇
  2012年   26篇
  2011年   18篇
  2010年   8篇
  2009年   17篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有474条查询结果,搜索用时 31 毫秒
11.
Formation of Mesozoic western China, which was dominated by tectonic amalgamation along its southern margin and associated intracontinental tectonisms, holds a key for interpreting the succedent Cenozoic evolution. This paper presents new data including lithology, sedimentary facies, stratigraphic contact, seismic interpretation and paleo-structures within the Upper Jurassic-Lower Cretaceous strata in the northern Qaidam Basin, NW China. These data all account for a contractional tectonic deformation in the earliest Cretaceous. The South Qilian Shan, according to the sedimentary features and provenance analysis, reactivated and exhumated during the deformation, controlling the deposition of the Lower Cretaceous sequences. A simplified model for the Late Jurassic-Early Cretaceous paleogeography and tectonics of the northern Qaidam Basin is accordingly proposed. The results also support a ∼25° clockwise rotation of the Qaidam Basin since the Early Cretaceous and a more accurate Mesozoic evolution process for the basin. This earliest Cretaceous deformation, associated with the reactivation of the South Qilian Shan at the time, are part of the intracontinental tectonisms in central Asia during the Mesozoic, and probably driven by both the closure of the Mongol-Okhostk Ocean to the north and the collision of the Lhasa and the Qiangtang blocks to the south.  相似文献   
12.
西秦岭铧厂沟金矿床流体包裹体特征研究及矿床成因   总被引:3,自引:0,他引:3  
铧厂沟金矿位于西秦岭勉略缝合带南侧,其产出受韧脆性剪切带控制,赋矿围岩为泥盆系细碧岩、凝灰质绢云千枚岩和灰岩。根据脉体穿切关系和矿物交代关系,可以将铧厂沟金矿分为早、中、晚3个成矿阶段。在铧厂沟金矿的石英中发育了CO2-H2O型、纯CO2型、H2O溶液型和含子矿物型四种类型流体包裹体。早期石英中原生包裹体主要是CO2-H2O型和纯CO2型,其成分为CO2+H2O±N2±CH4±H2S,均一温度集中在320~360℃,盐度为0.43%~5.14% NaCleqv;中阶段为主成矿阶段,该阶段石英中包含了所有四种类型的包裹体,其中H2O溶液型包裹体占了大多数,CO2-H2O和水溶液包裹体均一温度集中在240~320℃,盐度为0.43%~11.19% NaCleqv;晚阶段石英仅发育水溶液型包裹体,具有较低的均一温度(118~228℃)和盐度(0.18%~6.59% NaCleqv)。根据CO2-H2O型包裹体计算主成矿阶段压力为70~195MPa,成矿深度为5~7km。总体而言,铧厂沟金矿的初始流体具有中高温、富CO2、低盐度的变质流体特征,晚成矿阶段流体演化为低温、低盐度水溶液流体,流体的不混溶导致了主成矿期的矿质的大量沉淀,铧厂金矿为中浅成的造山型矿床。  相似文献   
13.
High-pressure (HP) granulites provide telling records of mineral reactions at upper mantle to lower crustal levels and key information on the fate of material in subduction systems. The latter especially applies when they abut eclogite and mantle dunite because such rock associations are crucial for understanding the incompletely known processes at the interface of converging plates. A continental arc, active c. 520–395 Ma ago, formed an enigmatic example of such a rock association in the Songshugou area, Qinling Orogen. To unravel the juxtaposition of the distinct rocks, this study combines petrography, phase equilibria modelling, conventional thermobarometry, and zircon U–Th–Pb–Ti–REE analysis. Two mafic HP granulites, which contain the mineral assemblages garnet–clinopyroxene–plagioclase–rutile–mesoperthite–quartz and garnet–clinopyroxene–plagioclase–rutile, experienced peak metamorphic conditions of ≤1.4 GPa, 860°C and ~1.3 GPa, ≥910°C, respectively. During decompression and cooling, at 489 ± 4 Ma, amphibole lamellae unmixed from a clinopyroxene solid solution and orthopyroxene in part replaced garnet. A felsic HP granulite shows equilibration of garnet, perthite, antiperthite, kyanite, quartz, and rutile at 810–860°C, ~1.2 GPa, sillimanite growth during decompression, and upper amphibolite facies cooling at 510 ± 4 Ma. Though the thermobarometric data are just within the methodological errors, the U/Pb zircon ages imply the HP granulites did not evolve coherently. The HP granulites either represent foundered lower arc crust or originated from subduction erosion because their geochemistry is indistinguishable from that of the hanging-wall plate. Published and new pressure–temperature–time–deformation paths converge at ~710°C, ~0.9 GPa, and ≲470 Ma, implying exhumation tectonics juxtaposed the HP granulites with a mélange of eclogite and mantle dunite at lower crustal levels. This study highlights that lower arc crust can comprise material of diverse evolution.  相似文献   
14.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   
15.
The 1300 Ma Fraser Complex in the Albany‐Fraser Orogen of Western Australia is a thrust stack of mainly gabbroic rocks metamorphosed to granulite facies. This package of fault‐bounded units was elevated from a deep crustal level onto the margin of the Yilgarn Craton during continental collision between the Mawson and Yilgarn Cratons. Incompatible trace‐element distributions demand at least three mantle sources. Primitive‐mantle‐normalised incompatible‐element distributions show strong negative Ta–Nb anomalies, typical of subduction‐derived magmas. Three lines of evidence indicate that the mafic magmas did not acquire these anomalies by assimilation of crustal rocks: (i) major‐element compositions do not allow appreciable contamination with felsic material; (ii) Ni contents of many mafic rocks are too high for a significant contribution from a felsic assimilant; and (iii) Sr and Nd isotopic data support a largely juvenile source for the magmas that produced the Fraser Complex. Hence, the Ta–Nb anomalies are interpreted to reflect subduction‐related magmatic sources. On multielement diagrams, depletions in Sr, Eu, P, and Ti can be explained by fractional crystallisation, whereas Th and Rb depletions in many of the Fraser Complex rocks probably reflect losses during granulite‐facies metamorphism. These results suggest that the lower crust in this region at 1300 Ma was dominantly of arc origin, and there is no evidence to support mantle plume components. The Fraser Complex is interpreted as remnants of oceanic arcs that were swept together and tectonically interleaved with the margin of the Mawson Craton just before, or during, collision with the Yilgarn Craton at 1300 Ma.  相似文献   
16.
There is an ongoing debate about the tectonic evolution of southeast Australia, particularly about the causes and nature of its accretion to a much older Precambrian core to the west. Seismic imaging of the crust can provide useful clues to address this issue. Seismic tomography imaging is a powerful tool often employed to map elastic properties of the Earth's lithosphere, but in most cases does not constrain well the depth of discontinuities such as the Mohorovi?i? (Moho). In this study, an alternative imaging technique known as receiver function (RF) has been employed for seismic stations near Canberra in the Lachlan Orogen to investigate: (i) the shear-wave-velocity profile in the crust and uppermost mantle, (ii) variations in the Moho depth beneath the Lachlan Orogen, and (iii) the nature of the transition between the crust and mantle. A number of styles of RF analyses were conducted: H-K stacking to obtain the best compressional–shear velocity (V P /V S) ratio and crustal thickness; nonlinear inversion for the shear-wave-velocity structure and inversion of the observed variations in RFs with back-azimuth to investigate potential dipping of the crustal layers and anisotropy. The thick crust (up to 48 km) and the mostly intermediate nature of the crust?mantle transition in the Lachlan Orogen could be due to the presence of underplating at the base of the crust, and possibly to the existing thick piles of Ordovician mafic rocks present in the mid and lower crust. Results from numerical modelling of RFs at three seismic stations (CAN, CNB and YNG) suggest that the observed variations with back-azimuth could be related to a complex structure beneath these stations with the likelihood of both a dipping Moho and crustal anisotropy. Our analysis reveals crustal thickening to the west beneath CAN station which could be due to slab convergence. The crustal thickening may also be related to the broad Macquarie volcanic arc, which is rooted to the Moho. The crustal anisotropy may arise from a strong N–S structural trend in the eastern Lachlan Orogen and to the preferred crystallographic orientation of seismically anisotropic minerals in the lower and middle crust related to the paleo-Pacific plate convergence.  相似文献   
17.

In its type area around Narooma, the Narooma Terrane in the Lachlan Orogen comprises the Wagonga Group, which consists of the Narooma Chert overlain by the argillaceous Bogolo Formation. Conodonts indicate that the lower, largely massive (ribbon chert) part of the Narooma Chert ranges in age from mid-Late Cambrian to Darriwilian-Gisbornian (late Middle to early Late Ordovician). The upper Narooma Chert consists of shale, containing Eastonian (Late Ordovician) graptolites, interbedded with chert. Where not deformed by later faulting, the boundary between the Narooma Chert and Bogolo Formation is gradational. At map scale, the Narooma Terrane consists of a stack of imbricate thrust slices caught between two thrust faults that juxtaposed the terrane against the coeval Adaminaby Superterrane in Early Silurian time. These slices are best defined where Narooma Chert is thrust over Bogolo Formation. The soles of such slices contain multiply foliated chert. Late extensional shear bands indicate a strike-slip component to the faulting. The Narooma Terrane, with chert overlain by muddy ooze, is interpreted to be an oceanic terrane that accumulated remote from land for ~50 million years. The upward increase in the terrigenous component at the top of the Wagonga Group (shale, argillite, siltstone and sandstone of the upper Narooma Chert and Bogolo Formation) records approach of the terrane to the Australian sector of the Gondwana margin. Blocks of chert, argillite and sandstone reflect extensional/strike-slip disruption of the terrane as it approached the transform trench along the Gondwana-proto-Pacific plate boundary. Blocks of basalt and basalt breccia represent detritus from a seamount that was also entering the trench. There is no evidence that the Narooma Terrane or the adjacent Adaminaby Group formed in an accretionary prism/ subduction complex.  相似文献   
18.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   
19.
Despite extensive efforts to understand the tectonic evolution of the Jiangnan Orogen in South China, the orogenic process and its mechanism remain a matter of dispute. Previous geodynamic studies have mostly focused on collisional orogeny, which is commonly invoked to explain the Jiangnan Orogen. However, it is difficult for such hypotheses to reconcile all the geological and geophysical data, especially the absence of ultrahigh-pressure metamorphic rocks. Based on the magnetotelluric data, we ...  相似文献   
20.
台湾造山带是中新世晚期以来相邻菲律宾海板块往北西方向移动,导致北吕宋岛弧系统及弧前增生楔与欧亚大陆边缘斜碰撞形成的。目前该造山带仍在活动,虽然规模很小,但形成了多数大型碰撞造山带中的所有构造单元,是研究年轻造山系统的理想野外实验室,为理解西太平洋弧-陆碰撞过程和边缘海演化提供了一个独特的窗口。本文总结了二十一世纪以来对台湾造山带的诸多研究进展,讨论了其构造单元划分及演化过程。我们将台湾造山带重新划分为6个构造单元,由西至东分依次为:(1)西部前陆盆地;(2)中央山脉褶皱逆冲带;(3)太鲁阁带;(4)玉里-利吉蛇绿混杂岩带;(5)纵谷磨拉石盆地;(6)海岸山脉岛弧系统。其中,西部前陆盆地为6.5Ma以来伴随台湾造山带的隆升剥蚀形成沉积盆地。中央山脉褶皱逆冲带为新生代(57~5.3Ma)欧亚大陆东缘伸展盆地沉积物由于弧-陆碰撞受褶皱、逆冲及变质作用改造形成的。太鲁阁带是造山带中的古老陆块,主要记录中生代古太平洋俯冲在欧亚大陆活动边缘形成的岩浆、沉积和变质岩作用。玉里-利吉蛇绿混杂岩带和海岸山脉岛弧系统分别为中新世中期(~18Ma)以来南中国海板块向菲律宾海板块之下俯冲形成的岛弧和弧前增生楔,其中玉里混杂岩中有典型低温高压变质作用记录,变质年龄为11~9Ma;岛弧火山作用的主要时限为9.2~4.2Ma。纵谷磨拉石盆地记录1.1Ma以来的山间盆地沉积。台湾造山带的构造演化可划分为4个阶段:(a)古太平洋板块俯冲与欧亚大陆边缘增生阶段(200~60Ma);(b)欧亚大陆东缘伸展和南中国海扩张阶段(60~18Ma);(c)南中国海俯冲阶段(18~4Ma);(d)弧-陆碰撞阶段(<6Ma)。台湾弧-陆碰撞造山带是一个特殊案例,其弧-陆碰撞并不伴随着弧-陆之间的洋盆消亡,而是由于北吕宋岛弧及弧前增生楔伴随菲律宾海板块运动向西北方走滑,仰冲到欧亚大陆边缘,形成现今的台湾造山带。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号